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Sexual selection on cuticular hydrocarbons
of male sagebrush crickets in the wild

Sandra Steiger1,2, Geoffrey D. Ower1, Johannes Stökl3, Christopher Mitchell4,
John Hunt4 and Scott K. Sakaluk1

1Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University,
Normal, IL 61790-4120, USA
2Institute of Experimental Ecology, University of Ulm, Ulm 89081, Germany
3Institute of Zoology, University of Regensburg, Regensburg 93053, Germany
4Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus,
Penryn TR10 9EZ, UK

Cuticular hydrocarbons (CHCs) play an essential role in mate recognition in

insects but the form and intensity of sexual selection on CHCs has only been

evaluated in a handful of studies, and never in a natural population. We quan-

tified sexual selection operating on CHCs in a wild population of sagebrush

crickets, a species in which nuptial feeding by females imposes an unambigu-

ous phenotypic marker on males. Multivariate selection analysis revealed a

saddle-shaped fitness surface, suggesting a complex interplay between the

total abundance of CHCs and specific CHC combinations in their influence

on female choice. The fitness surface resulting from two axes of disrup-

tive selection reflected a trade-off between short- and long-chained CHCs,

suggesting that males may be sacrificing some level of desiccation resistance

in favour of increased attractiveness. There was a significant correlation

between male body size and total CHC abundance, suggesting that male

CHCs provide females with a reliable cue for maximizing benefits obtained

from males. Notwithstanding the conspicuousness of males’ acoustic signals,

our results suggest that selection imposed on males via female mating prefer-

ences may be far more complex than previously appreciated and operating in

multiple sensory modalities.
1. Introduction
The importance of visual and acoustic traits in mate choice has been widely

addressed in a variety of animal taxa, but the role of chemical cues and signals

remains relatively unexplored [1,2]. Although chemical signalling is the most

widespread form of communication, our understanding of how sexual selection

shapes the evolution of pheromones is poorly developed [1–4]. Cuticular lipids,

which primarily function as an evaporation barrier and are virtually ubiquitous

in terrestrial arthropods, have been recognized to play an important role in

species and mate recognition in insects [5–7]. More recently, there has been a

growing appreciation that the evolution of these compounds may be shaped

by sexual selection arising through female mating preferences. The form and

intensity of sexual selection on cuticular hydrocarbons (CHCs) have been

studied extensively but, with the exception of a single study of field crickets

[8], only in Drosophila [9,10] and never in the wild. Little is known about the

role of sexual selection in shaping CHC profiles in natural populations.

In this study, we assess the form and intensity of sexual selection acting on

CHCs of free-living male sagebrush crickets, Cyphoderris strepitans, mating in

the field under natural conditions. Measuring the mating success of insects

in nature is normally a daunting task [11]. The genus Cyphoderris, however,

offers an ideal model system in this regard because mating imposes an unam-

biguous phenotypic marker on males that results from an unusual form of

nuptial feeding by females. The sagebrush cricket, C. strepitans (Orthoptera:

Haglidae), is one of only three extant species of hump-winged grigs in North

America, relatively obscure ensiferans that are restricted to mountainous

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.2353&domain=pdf&date_stamp=2013-11-06
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areas of western North America [12]. Cyphoderris strepitans
occur in high-elevation sagebrush meadows nestled within

coniferous forests in Wyoming and Colorado [12]. In Grand

Teton National Park, where the majority of field studies of

C. strepitans have been conducted [13–16], sexual activity

commences in mid-May, an arduous time of year at the

higher elevations when patches of snow remain scattered

on the ground and night-time temperatures frequently fall

below freezing [17]. Each night of the breeding season,

males emerge from the ground cover to secure a calling

perch in sagebrush or lodgepole pine, where they sing to

attract sexually receptive females [18,19].

Once a calling male has attracted a female, the female

mounts the male dorsally to initiate a 3–5 min mating that

ends with the transfer of a spermatophore to the female

[20,21]. During the time that the female remains mounted

on the male, she feeds on the tips of the male’s fleshy hind

wings and ingests haemolymph seeping from the open

wounds that result from nuptial feeding. Thus, it is possible

to ascertain whether or not a male has mated merely by

inspecting his hind wings for the wounds inflicted by the

female while mating. Males exhibit differential mating

success based on their previous mating experience: virgin

males have a higher probability of obtaining a mating than

do non-virgin males of securing an additional mating, a pat-

tern that has been termed the virgin-male mating advantage

[13,22]. The decreased likelihood of non-virgin mating appar-

ently arises from the loss of haemolymph and costly immune

responses that ensue as a result of wing wounding during

copulation [15,16]. Although much of our previous work

has focused on establishing the proximate basis of the

virgin-male mating advantage, it has overshadowed a more

fundamental question: what factors influence the success of

a male in obtaining a mate? Measurements of lifetime

mating success in male C. strepitans have revealed that the

median mating frequency is one, with many males failing

to secure a mate at all and a small minority obtaining

between two and four mates [22]. Because calling is required

for mate attraction, it seems likely that certain features of

males’ calls influence variation in male mating success.

Indeed, previous studies of acoustic Orthoptera have shown

that the acoustical properties of a male’s song can influence

his attractiveness to females [23,24], and more recent work

on C. strepitans has revealed significant multivariate non-

linear sexual selection acting on male song traits [25].

However, males successful at attracting females through

acoustic signalling are not assured of mating unless they suc-

ceed in inducing females to mount and to remain mounted

sufficiently long to ensure successful transfer of the sperma-

tophore. Numerous laboratory studies have shown that

even when closely confined with singing males, female

sagebrush crickets will often forgo mating, suggesting that

some males are perceived as more attractive than others

[14,21,26]. Although male song may play a role in a female’s

decision to mount a male, it seems likely that other sensory

modalities come into play in the close-range interactions

that ensue after the female locates the male, including tactile

and chemical signals. Indeed, CHCs are known to facilitate

species recognition, kin recognition and sex recognition in a

variety of cricket species [27–29]. Thomas & Simmons [8]

have recently shown that although male song is vital to a

male’s ability to attract females, the CHC profile of male

field crickets (Teleogryllus oceanicus) has a significant influence
on female mating decisions resulting in significant sexual

selection on male CHCs.

Here, we estimate the strength and form of sexual selec-

tion on male CHCs in a natural population of sagebrush

crickets, C. strepitans. We take advantage of an important fea-

ture of the mating behaviour of this species, nuptial feeding

by females on the hind wings of males, to accurately assign

mating success to males collected in the field. We apply

formal multivariate selection analysis to our field data to

estimate the standardized linear and nonlinear selection

gradients and conduct a canonical analysis of the matrix of

standardized nonlinear selection gradients (g) to provide a

best quadratic approximation of the individual fitness surface

for male CHCs [30]. This work is, to our knowledge, the first

study examining sexual selection on male CHCs in a natural

population of an insect.
2. Material and methods
(a) Experimental protocol
The study was conducted in 2010 on a population of sagebrush

crickets in Grand Teton National Park, WY, USA located in an

area of approximately 3 ha in sagebrush meadow habitat adjacent

to the Snake River at Deadman’s Bar (43845’33.9100 N, 110837’25.1200

W). We began monitoring the population on a nightly basis

(weather permitting) beginning 20 May continuing into June,

which spans the breeding season of C. strepitans at this locality.

Males were found at night by orienting to their calls and using

head lamps to determine their location within a sagebrush bush.

The mating status of males was determined by examining their

hind wings for evidence of wing wounding by females. Virgin

males were identified by their intact wings, whereas mated

males were identified by visibly wet wounds with no discolor-

ation, indicating that the male had mated on the night of

capture, or dry, melanized wounds, indicating that the male had

mated at least one night previous to the night of capture (see fig.

1 in [16]). We continued to monitor the population until it attained

a ratio of approximately 1 : 1 virgin to mated males, at which time

we collected a total of 224 males at random from the population

over two successive nights. This protocol ensured that females

were given ample opportunity to mate with the most attractive

males in the population. Males were held individually in collecting

vials and transported to the University of Wyoming-National Park

Service Research Station, less than 30 km away, for processing.

(b) Chemical analysis of cuticular hydrocarbons
Upon their transport to the field station, males were frozen over-

night and thawed the following day, after which their pronotum

width was measured to the nearest 0.01 mm using digital calli-

pers (Fowler, Newton, MA, USA). Male size was measured

because increased body size in crickets often is favoured by

female mating preferences [31,32] and we wished to determine

whether any male CHCs were associated with this trait. Male

CHCs were extracted by whole-body immersion in 2.5 ml of

hexane (Fisher H303–4) for 10 min. Samples were analysed on

an Agilent Technologies gas chromatography-mass spectrometer

(GC-MS) (Agilent 7890 GC coupled with an Agilent 5975 mass

spectrometer) fitted with a DB1-MS column (30 m � 0.25 mm

ID � 0.25 mm film thickness; see the electronic supplementary

material, methods S1).

Prior to analysis, the area under each chromatograph peak

was divided by the area of the internal standard (pentadecane)

to control for among-cricket variance in CHC extraction effi-

ciency. This proportion was then log10 transformed to ensure

normality. Owing to the large number of CHCs examined
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(table 1), we extracted principal components (PCs) based on the

correlation matrix and retained PCs with eigenvalues exceeding

1 for further analysis [33]. In total, 10 PCs were retained for our

selection analysis based on this criterion. We interpret factor

loadings that exceed j0.25j as biologically important [33].
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(c) Multivariate selection analysis
We used a standard multivariate selection analysis to estimate the

strength and form of linear and nonlinear sexual selection acting

on male CHCs [34]. We assigned an absolute fitness score of 0 to

virgin males and 1 to males that had mated based on patterns of

wing wounds. As recommended by Lande & Arnold [34], this

absolute fitness score was transformed to relative fitness by divid-

ing by the mean absolute fitness of the population. We then fitted

a linear regression model including the PCs describing CHC

composition as the predictor variables and relative fitness as the

response variable to estimate the vector of standardized linear

selection gradients (b). A quadratic regression model including all

the linear, quadratic and cross-product terms was then used to esti-

mate the matrix of standardized nonlinear selection gradients (g).

Quadratic regression coefficients are known to underestimate

the stabilizing and disruptive selection gradients by a factor of

0.5, and we therefore doubled these gradients following the

recommendation of Stinchcombe et al. [35].

Interpreting the size and significance of individual g terms is

likely to underestimate the strength of nonlinear selection [36].

We therefore explored the extent of nonlinear sexual selection

on male CHCs by conducting a canonical analysis to locate the

major eigenvectors of the fitness surface [37]. The strength of

linear selection along each of the eigenvectors is given by theta

(ui) and the strength of nonlinear selection is given by their eigen-

values (li). We estimated ui and li for each eigenvector using the

double regression method of Bisgaard & Ankenman [38].

Relative fitness was not normally distributed and although

this does not influence the sign or magnitude of selection gradi-

ents [34], it does present problems with testing the significance of

these gradients. Therefore, to assess the significance of our linear

and nonlinear selection gradients we used a resampling pro-

cedure in which we randomly shuffled relative fitness across

individual males in our dataset to obtain a null distribution for

each selection gradient where there is no relationship between

CHCs and fitness. Probabilities are the number of times (out of

9999 iterations) in which the gradient pseudo-estimate was

equal to or less than the original estimated gradient (see [23]

for an application of this approach). We conducted separate ran-

domization tests for the multiple regression models for linear

selection and for the full quadratic model. The same resampling

procedure was used to assess the significance of ui and li for each

eigenvector after the canonical rotation of g.

We used thin-plate splines [39] to visualize the major eigen-

vectors of the fitness surface extracted from the canonical

rotation of g. We used the Tps function of the FIELDS package

in R (v. 2.13.0, www.r-project.org) to fit the thin-plate splines

and to visualize them in both the perspective and contour-map

views. We used the value of the smoothing parameter (l) that

minimized the generalized cross-validation score when fitting

the thin-plate splines [39].
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3. Results
GC-MS analysis of CHCs in male C. strepitans revealed 48 indi-

vidual CHCs ranging in length from C25 to C35 and consisting

of a mixture of straight-chained alkanes, mono-methylalkanes,

dimethylalkanes and trimethylalkanes (see the electronic

supplementary material, table S1 and figure S1).
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PC analysis of these 48 individual CHC peaks yielded 10

PCs with eigenvalues exceeding 1, which collectively explain

76.04% of the total variation in CHC expression (see the elec-

tronic supplementary material, table S2). PC1 accounts for

33.07% of the variance in male CHC expression and is positively

loaded to each CHC peak (see the electronic supplementary

material, table S2). Consequently, this vector describes the

absolute amount of CHCs possessed by males. PC2 explains a

further 12.30% of the variance in male CHCs and is positively

loaded to longer chained CHCs (peak 32 and over) and nega-

tively loaded to shorter chained CHCs (peak 23 and below).

PC3 explains a further 6.90% of the variance in male CHCs

and is also positively loaded to longer chained CHCs (peak

17 and over) and negatively loaded to shorter chained CHCs

(peak 16 and under). Thus, although both PC2 and PC3

describe the trade-off between short- and long-chained CHCs,

this trade-off is centred around longer chained CHCs for PC2.

PC4–PC10 each describes the trade-off between specific

CHCs and there is no obvious relationship to chain length.

PC4 explains a further 5.64% of the variance in male CHCs

and is positively loaded to seven peaks (peaks 1, 6, 25, 32, 36,

37 and 45) and negatively loaded to seven peaks (peaks 13,

21, 26, 30, 33, 34 and 40). PC5 explains a further 4.13% and is

positively loaded to six peaks (peaks 18, 33, 38, 43, 46 and 48)

and negatively loaded to four peaks (peaks 26, 35, 39 and 41),

whereas PC6 explains a further 3.51% and is positively

loaded to six peaks (peaks 26, 33, 39, 41, 42 and 48) and nega-

tively to four peaks (peaks 24, 25, 30 and 32). PC7 explains a

further 3.39% and is positively loaded to seven peaks (peaks

12, 23, 26, 39, 44 and 47) and negatively loaded to a single

peak (peak 3). Therefore, with the exception of unidentified

peaks, PC5–PC7 reflect trade-offs between mono, di- and tri-

methylalkanes (see the electronic supplementary material,

table S1). PC8 explains a further 2.70% of the variance in male

CHCs and is positively loaded to six peaks (peaks 7, 12, 13,

21, 23 and 48) and negatively to a single peak (peak 20). PC9

and PC10 each represents a trade-off between three different

CHC peaks. PC9 explains a further 2.33% of the variance in

male CHCs and is positively loaded to peak 3 and negatively

loaded to two unidentified peaks (peaks 5 and 8), all of

which are relatively short chained. PC10 explains a final

2.09% of the variance in male CHCs and is also positively

loaded to peak 3 and negatively loaded to two peaks (peaks

7 and 27). Male pronotum width was positively correlated

with PC1 (r ¼ 0.22, n ¼ 223, p ¼ 0.001), but was not correlated

with any of the other PCs (all p . 0.05).

Standardized linear, quadratic and correlational selection

gradients are presented in table 1. There was significant linear

sexual selection favouring lower values for PC2 and higher

values for PC7 and PC8. There was also significant disruptive

sexual selection operating on PC2 and stabilizing sexual

selection operating on PC5. There was significant positive

correlational sexual selection operating on the covariance

between PC1 and PC5, PC6 and PC7, and PC6 and PC9.

There was also significant negative correlational sexual selec-

tion operating on the covariance between PC1 and PC4, PC1

and PC6, PC1 and PC9, and PC5 and PC9.

Canonical analysis of the g matrix resulted in five eigen-

vectors (m1, m2, m8, m9 and m10) with significant nonlinear

sexual selection (table 2). There was significant stabilizing

selection acting along three of these five eigenvectors (m8,

m9 and m10). Visualization of the fitness surfaces of the stron-

gest axis of stabilizing selection, m10, against each of the
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minor axes, m8 and m9, reveals well-defined, narrow cones

(figure 1). The eigenvector of the strongest stabilizing selec-

tion, m10, was heavily weighted by a positive contribution

from PC5 and a negative contribution from PC1 (table 2).

The remaining two eigenvectors of significant stabilizing

selection (m8 and m9) also experienced significant linear selec-

tion (table 2 and figure 1). The m9 eigenvector was heavily

weighted by a positive contribution from PC7 and negative

contribution from PC4 and PC6 and linear selection favoured

higher values of this eigenvector (i.e. an increase in PC7 and

decreases in PC4 and PC6) (table 2). The m8 eigenvector was

heavily weighted by a positive contribution from PC6 and

negative contributions from PC3 and PC9 and linear selection

favoured higher values of this eigenvector (i.e. an increase in

PC6 and decreases in PC3 and PC9) (table 2).

There was significant disruptive selection operating along

the remaining two eigenvectors of significant nonlinear selec-

tion, m1 and m2 (table 2 and figure 2). The dominant

eigenvector of nonlinear sexual selection (m1) was heavily

weighted by a positive contribution from PC1 and negative

contributions from PC6 and PC9 (table 2). The second eigen-

vector of significant disruptive selection (m2) was heavily

weighted by a positive contribution from PC2 and negative

contributions from PC4 and PC8. This eigenvector also

experienced significant linear selection favouring lower

values of m2 (i.e. increases in PC4 and PC8 and a decrease

in PC2) (table 2). The combination of positive (m1 and m2)
and negative (m8, m9 and m10) eigenvalues (table 2) formally

indicates that the fitness surface is best described as a multi-

variate saddle and can be visualized along the two most

dominant eigenvectors (m1 and m10) of the fitness surface

(figure 3).

There was significant linear selection along two eigenvec-

tors, m3 and m6, that did not experience significant nonlinear

selection. In both instances, linear selection favoured lower

values for these eigenvectors. For m3, this corresponds to an

increase in PC3 and decreases in PC2 and PC4, whereas for

m6 this corresponds to an increase in PC10 and decreases in

PC2 and PC8 (table 2).
4. Discussion
Although male sagebrush crickets must call to attract sexu-

ally receptive females [18], our results suggest that a

female’s decision to mate does not end upon successful pho-

notaxis. Instead, chemical signals in the form of CHCs appear

to influence a female decision to consummate a mating once

pair formation has occurred. Although sexual selection on a

number of male CHC traits was significant, we cannot be cer-

tain that male CHCs were the target of female mating

preferences and not simply correlated with some other trait

that influenced female mate choice. Nevertheless, previous

studies have revealed that chemical signals are essential to
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successful mating in crickets, playing a critical role in species,

sex and mate recognition [8,27–29]. Physical or chemical

ablation of female antennae profoundly diminishes female

receptivity [29,40], and the use of hexane solvents to strip

females of their CHCs, followed by reapplication of male-

or female-derived CHCs, has revealed significant effects on

the likelihood of male courtship [29]. Cricket CHCs have

also been shown to be the target of female mate choice in

trials staged in the laboratory [8,41]; for example, female

crickets prefer CHCs of dominant males over those derived

from subordinate males [41]. Thus, it seems likely that the

sexual selection on male CHCs documented in this study is

mediated, at least in part, by female mating preferences.

Our analyses revealed both significant linear and non-

linear sexual selection on CHCs of male sagebrush crickets

captured from wild populations. The complex pattern of

multivariate nonlinear selection that emerged was character-

ized primarily by strong stabilizing and disruptive selection

on male CHCs, resulting in a saddle-shaped fitness surface.

Such a fitness surface seems characteristic of the majority of

laboratory studies measuring multivariate sexual selection

in male crickets, including male song traits [24], cuticular
hydrocarbons [8], morphological characters [42] and the

chemical composition of males’ nuptial food gifts [43], and

a similar pattern has emerged in studies of other insects

[44,45]. Many of these sexual signals are known to impose

significant energy costs on males, and thus may serve as

honest indicators of male quality [46]. Whether CHCs of

male sagebrush crickets constitute an honest signal remains

to be determined, but it would be advantageous to females

if some aspect of male CHCs was reliably correlated with

the provision of a greater volume of haemolymph during

hind-wing nuptial feeding. Hinting at this possibility was the

significant correlation between male body size and PC1. In

male ground crickets, Allonemobius socius, a species in which

males also provide females with a haemolymph gift that

females obtain during copulation by chewing on a specialized

spur on the male’s hind tibia, larger males provide larger

gifts [47]. Similarly, in decorated crickets, Gryllodes sigillatus,
larger males provide females with a larger spermatophylax

at mating, a gelatinous mass forming part of the male’s sper-

matophore and consumed by the female after mating [48,49].

We do not know whether larger male C. strepitans also provide

a greater volume of haemolymph to females during mating,
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but if they do, the link between male CHCs and male body size

could conceivably provide females with a valuable cue by

which they could maximize the direct benefits they obtain

from prospective mates.

Our selection analysis assumes that males in the virgin and

mated groups had equal opportunities to mate, an assumption

that may be violated if males eclose at different times during

the breeding season. If mated males eclose earlier in the

season than virgin males and thus have more time to obtain

matings, any differences in the CHC profiles of virgin and

mated males could be attributed as much to age-related

changes in CHC composition as to any differences in intrinsic

male attractiveness. However, a previous study of sagebrush

crickets emerging within a field enclosure erected at the

study site suggests that males become sexually active within

a few days of each other [22]. A more recent mark–recapture

study conducted in a free-living population revealed no signifi-

cant effect of date of capture on time to mating; the difference

in the time of initial capture of virgin and mated males was less

than half a day [25]. We conclude, therefore, that observed

differences in the CHCs of virgin and mated males are likely

to stem from their effect on male attractiveness and not from

any age-related effects.

There appears to be a complex interplay between the total

abundance of CHCs and specific CHC combinations in

their influence on female choice, as suggested by the saddle-

shaped selection surface arising from the two major axes of

nonlinear selection, m1 and m10 (figure 3). There was significant

disruptive selection acting on m1 resulting in two fitness peaks,

one occurring at low values of m1 and a smaller peak at high

values of m1. Examination of the PC loadings on this eigen-

vector suggests that disruptive selection acts most strongly

on the total amount of CHCs present on the surface of the

male’s cuticle (PC1), coupled with selection for specific CHC

combinations, including both di- and trimethylalkanes and

mono- and dimethyalkanes (PC6 and PC9). The dominant

axis of stabilizing selection, m10, was also heavily weighted

by a negative contribution from total CHC abundance (PC1)

and a positive contribution from PC5, which appears to reflect

a trade-off between specific mono-, di- and trimethylalkanes.

Our results also suggest that female choice and desicca-

tion resistance may impose contrasting selection patterns on

male CHCs. There was both strong linear (table 1) and non-

linear selection (figure 2) acting on PC2, which contrasts

relatively shorter and longer CHCs. A trade-off between

short- and long-chained CHCs is often related to desiccation

tolerance in insects, with a greater relative increase in long-

chained CHCs providing greater desiccation resistance

[50,51]. More long-chained CHCs are produced at higher

temperatures in Drosophila [52,53], and more long-chained
CHCs are produced when flies are selected for desiccation

resistance [51,54]. Thus, male C. strepitans may be sacrificing

some level of desiccation resistance in favour of increased

attractiveness to females because shorter chained, and thus,

more volatile CHCs have been shown to increase male attrac-

tiveness in several Drosophila species [9,55]. Such a trade-off is

not unique to C. strepitans, as it has also been documented in

male decorated crickets, Gryllodes sigillatus, where it is influ-

enced by a significant genotype � environment interaction

[56]. It must be acknowledged, however, that there was no

comparable linear selection on PC3, which also describes a

trade-off between short- and long-chained CHCs. Although

this trade-off was centred around shorter chained CHCs com-

pared with PC2, the evidence in favour of a trade-off between

attractiveness and desiccation resistance must be considered

equivocal.

Undoubtedly because of its conspicuousness as a sexual

signal, the overwhelming majority of studies on sexual selec-

tion in crickets have focused on male calling song as the

primary target of female mating preferences [23–25]. How-

ever, a growing body of evidence suggests that male

chemical signals in the form of CHCs can have a profound

influence on female mating preferences even after pair for-

mation has occurred [7,8,57,58]. Most evidence to date has

been based on laboratory observation and the dearth of

studies in wild populations is almost certainly a consequence

of the difficulty in measuring male mating success under

natural conditions. This study, which involved measurement

of male mating success in a wild population based on a phe-

notypic marker of mating, revealed a complex pattern of

multivariate linear and nonlinear selection characterized pri-

marily by strong stabilizing and disruptive selection on male

CHCs. Hence, selection imposed on male sexual traits via

female mating preferences may be far more nuanced than

previously appreciated and operating in multiple sensory

modalities. What remains to be seen is the extent to which

selection on male song traits is opposed or reinforced by

selection on male chemical signals, or whether these selection

regimes operate independently. Thus, future studies will be

focused on investigating the genetic linkages between male

acoustic and chemical traits.
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