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The ability to recognize individuals is an important aspect of social interactions, but it can also be useful to

avoid repeated matings with the same individual. The Coolidge effect is the progressive decline in a male’s

propensity to mate with the same female combined with a heightened sexual interest in new females.

Although males that recognize previous partners and show a preference for novel females should have a

selective advantage as they can distribute sperm evenly among the females they encounter, there are few

invertebrate examples of the Coolidge effect. Here we present evidence for this effect in the burying beetle

Nicrophorus vespilloides and examine the mechanism underlying the discrimination between familiar and

novel mates. Burying beetles feed and reproduce on vertebrate carcasses, where they regularly encounter

conspecifics. Males showed greater sexual interest in novel females (virgin or mated) than in females they

had inseminated before. The application of identical cuticular extracts allowed us to experimentally create

females with similar odours, and male responses to such females demonstrated that they use female

cuticular patterns for discrimination. The chemical analysis of the cuticular profile revealed greater inter-

individual variation in female than in male cuticular patterns, which might be due to greater selection on

females to signal their individual identity.

Keywords: burying beetles; Nicrophorus; Coolidge effect; individual recognition; cuticular lipids;

identity signals
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1. INTRODUCTION

Although the cost of mating to males has long been

regarded as negligible, recent evidence shows that mating

and sperm production may generate non-trivial costs

(Dewsbury 1982; Van Voorhies 1992; Olsson et al. 1997;

Preston et al. 2001), promoting the evolution of prudent

ejaculate allocation or even male reluctance to mate

(Wedell et al. 2002). If the value of a female to a male

decreases with his increasing mating investment to that

individual female, males are expected to avoid re-mating

with the female in favour of other reproductive opportu-

nities (Wedell et al. 2002; Pizzari et al. 2003). The

‘Coolidge effect’, defined as a decline in the propensity of a

male to copulate repeatedly with the same female

combined with a heightened sexual interest in novel

females (Wilson et al. 1963; Dewsbury 1981), can be a

mechanism to distribute sperm more evenly. The Cool-

idge effect was first observed in rats (Beach & Jordan

1956) and has since been demonstrated in a number of

other mammals (see Dewsbury 1981) and birds (Pizzari

et al. 2003). Similarly, animals of many different groups
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b.2008.0375 or via http://journals.royalsociety.org.

for correspondence (sandra.steiger@biologie.uni-freiburg.de).
t address: Division of Zoo Animals, Exotic Pets and Wildlife,
e Faculty, University of Zurich, Winterthurerstaße 260, 8057
Switzerland.

080375—30/4/2008—12:51—CHANDRAN—299268—XML – pp. 1–9

121

122

123

124

125

126

127

18 March 2008
23 April 2008

1

(bees: Barrows 1975; amphibians: Donovan & Verrell

1991; reptiles: Tokarz 1992; flies: Wcislo 1992, Ödeen &

Moray 2008; beetles: Arnaud & Haubruge 1999; fishes:

Kelley et al. 1999) have been shown to avoid mating or

re-mating with familiar individuals.

The Coolidge effect per se has received no attention in

invertebrates with the exception of one recent study on

snails (Koene & Ter Maat 2007). Given the number of

studies that have examined mate choice in insects, it is

surprising that there have been no investigations of the

Coolidge effect per se in this group. Researchers may

frequently have assumed that the Coolidge effect requires

more complex neural processing than invertebrates are

capable of Koene & Ter Maat (2007). However, some

social insects have proved capable of individual recog-

nition (Tibbetts 2002, 2004; D’Ettorre & Heinze 2005),

and avoiding matings with one’s previous mate may not

necessarily require individual recognition. Female crickets

Gryllus sigillatus use self-referencing (marking males with

their individual specific chemical signature) to avoid

re-mating with previous mates (Ivy et al. 2005). Numer-

ous insects have evolved other mechanisms of discrimi-

nation against previously mated individuals that have

typically been interpreted as adaptations to sperm

competition. The so-called ‘antiaphrodisiacs’ are male-

produced chemicals that are transferred to females

during mating and discourage further matings by these

females (e.g. Happ 1969; Kukuk 1985; Peschke 1987;

128
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Carlson & Schlein 1991; Andersson et al. 2003) which

may also help the original male to avoid re-mating with

the same female.

This study investigated the occurrence and underlying

mechanism of the Coolidge effect in the burying beetle

Nicrophorus vespilloides. Males of this species show clear

evidence of sperm depletion after several days spent with

multiple females (Eggert 1990). To a male of this species,

re-mating with a female may thus entail a twofold cost:

time that could have been spent seeking out other females

and sperm that could have been more efficiently used to

inseminate another female. Burying beetles reproduce on

vertebrate carcasses, frequently in groups with several

females (Pukowski 1933; Müller et al. 1990, 2007). When

females leave the carcass early, or males have only limited

time on a carcass, males may benefit from distributing

sperm evenly among the available females. Even without

reproductive resources, males mate more frequently when

held with multiple females than with a single one (Eggert

1990). This effect could arise if males respond more

readily to females other than their last mate.

In burying beetles, cuticular contact pheromones

contain information about breeding and nutritional status,

sex and species (Whitlow 2003; Steiger et al. 2007), and

could play an important role in recognition processes like

nestmate recognition (Müller et al. 2003). To date, there is

no information about the role of cuticular substances in

interactions between the sexes. We tried to address

whether males are capable of discriminating between

their last mate and other females on the basis of cuticular

substances. Following the experimental protocol of Ivy

et al. (2005), we tested whether males transfer their own

chemical substances to females or learn cues from the

chemical profile of their females to recognize previous

mates. If males transfer substances, they should treat the

mate of a close male relative like they would treat their own

previous mate, provided that there is genetic variation in

chemical compositions and the cuticular patterns of close

relatives are similar to each other. If males rely on female

specific cues, they should instead exhibit reduced sexual

interest when presented with a close female relative of their

own previous mate. To confirm the importance of

cuticular extracts in male discrimination of females, we

observed male responses to females, whose cuticular

patterns we had manipulated, to be similar by applying

identical cuticular extracts. We examined the similarity of

the cuticular pattern among relatives to find evidence that

genetic similarity between individuals is correlated with

similarity of cuticular patterns.
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2. MATERIAL AND METHODS
(a) Origin and maintenance of experimental animals

Experimental animals were the first-generation offspring of

beetles collected from carrion-baited pitfall traps in the field

in June and July 2006. The field site was a deciduous forest

near Freiburg in southwestern Germany (48800 0 N,

078510 E). Beetles were maintained in temperature-controlled

chambers at 208C under a 16 L : 8 D photoperiod. Groups of

up to six same-sex siblings were kept in small transparent

plastic containers (10!10!6 cm) with moist peat and were

fed freshly killed mealworms twice a week. All experimental

specimens were between 20 and 60 days of age.
RSPB 20080375—30/4/2008—12:51—CHANDRAN—299268—XML – pp.
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(b) General procedures of behavioural experiments

Experiments that involved observation of copulatory

behaviour were conducted during the last 2 hours before

the end of the light phase. Males emit pheromones and mate

with attracted females during this period both in our own

(unpublished data) and a northern German population near

Bielefeld (Müller & Eggert 1987; Eggert & Müller 1989).

Matings were observed in small plastic containers (8!5!

6 cm) with a moistened plaster bottom. To minimize

disturbance immediately prior to an observation, males

were transferred to observation chambers 3 hours before

the onset of an experiment. Over the course of an experiment,

males remained in the same chamber while females were

introduced and removed. In each trial, a male was presented

with a female and either mated with her or did not mate

(see below), then the female was removed and the male

remained alone for 5 min before the next female (either the

same one or a different one) was introduced into the chamber.

For each encounter, we recorded the time to mating defined

as the time from the beetles’ first physical contact to the actual

coupling of genitalia. Females were removed from the

chamber as soon as the first mating ended. If the pair did

not mate within 5 min (300 s), we removed the female,

scoring a time to mating of 300 s.

Our study was designed to determine the readiness

of males to mate, and we interpret a long time to mating

as low male sexual interest, since matings are initiated by

males, who approach and mount females prior to mating. In

order to avoid the potentially confounding effects of the

females’ response to male attempts, we excluded trials in

which females clearly tried to avoid copulations by struggling

and attempting to leave during male mating attempts (17 out

of 198 trials).
(c) The effect of female novelty on male

mating behaviour

Our first experiment was designed to test for a Coolidge

effect in N. vespilloides males. Each experimental male

(nZ20) was presented with the same female four times.

The females were chosen randomly; they were virgin females

that had not encountered any males prior to the experiment.

In his fifth encounter, each male was presented with a novel

unmated female to test for increased sexual interest. To

assess possible effects of overall physical exhaustion of males

from the effort of mating on time to mating in successive

encounters, we established a control group in which males

(nZ10) were presented with novel unmated females in all

five successive encounters. In an additional experiment,

males (nZ19) were presented with the same female in all

five successive encounters.
(d) Recognition of familiar females

(i) Female mating status

The following experiments were meant to reveal the cues

males use to recognize a previous mate. In a first experiment

we tested whether female mating status influences male

time to mating. As in the above experiment, males

were presented with the same female four times. In a fifth

encounter we introduced either a novel virgin female (nZ17)

or a novel mated female (nZ20). Mated females were taken

from other trials in which they had all encountered a male

four times.
1–9
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(ii) Self-referent cues versus female-specific cues

Based on our previous knowledge about the role of cuticular

hydrocarbons in social interactions between individuals, it is

reasonable to assume that the recognition of mating partners

is also mediated by these chemical cues. Therefore, we

carried out a second experiment to learn whether males

transfer chemical substances from their own cuticle during

mating and use self-referent cues to recognize females (as

appears to be the case in crickets, where females initiate

matings and transfer cuticular chemicals, Ivy et al. 2005) or

whether they learn their mates’ chemical signature (their

individual hydrocarbon pattern). To obtain individuals that

were more similar genetically than full sibs (‘inbred’

individuals, inbreeding coefficient FAZ0.25), we subjected

F1 offspring of field-collected beetles to one generation of

full-sib mating and allowed them to rear offspring. Individuals

in the resulting F2 were thus the product of brother–sister

pairings, and siblings in this population were more closely

related than full sibs produced by unrelated parents

(coefficient of relatedness, rZ0.6 for our individuals and

rZ0.5 for ordinary full sibs). As in the first experiment, each

experimental male was presented with the same female in four

successive encounters. In the fifth encounter, one of the

following types of females was introduced to the male:

(i) familiar females (nZ20) that had previously mated with

the same male, (ii) novel females (nZ20) that had previously

mated with a different unrelated male, (iii) novel females

(nZ16) that had previously mated with the male’s inbred

brother, and (iv) novel females (nZ21) that were inbred

sisters of the male’s original mate. To avoid any confounding

effects of inbreeding avoidance, we never presented females

to related males. If males use self-referent cues, their res-

ponse to females inseminated by their inbred brother should

resemble their response to their own previous mate. If males

learn their mate’s chemical features, their response to their

previous mate’s inbred sister should resemble their response

to the previous mate herself.

(e) Masking of cuticular substances with

concentrated extracts

The experiment was designed to test the hypothesis that

cuticular substances are involved in the recognition process.

To this end, we attempted to experimentally manipulate

female surface chemicals to create pairs of females with

similar odour. We first extracted females individually in

pentane for 15 min. These females came from our inbred

group that resulted from full-sib matings (see previous

experiment). The extracts of four inbred sisters were

combined and their combined extract was completely

reduced by evaporation under a stream of gaseous nitrogen

and dissolved in 40 ml pentane. We applied 20 ml of the extract

to each of the two live virgin females by spreading small

droplets of it evenly over the elytra, pronotum and the

exposed part of the dorsal side of the abdomen. In effect, we

applied a concentration of substances that should have been

equivalent to amounts found on two females rather than one

to increase the probability that the experimental odour would

conceal the females’ actual individual chemical pattern. Live

females were used because males give up mating attempts

when they experience difficulties with intromission of their

aedeagus into the genital tract of dead females. To control for

any effects of the solvent, a separate group of females was

treated with 20 ml of pentane only. We started a trial 20 min

after applying the extracts to allow the experimental females
RSPB 20080375—30/4/2008—12:51—CHANDRAN—299268—XML – pp. 1–9
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some time to recover from the pentane application. In the

experimental group, each male (nZ12) was presented with

the same extract-treated female four times. In the fifth

encounter, a new unfamiliar female was introduced that had

been treated with the same extract. In the control group,

males (nZ10) were presented with the same pentane-treated

female in the first four encounters and with a novel unfamiliar

pentane-treated female in the fifth.
(f ) Cuticular patterns of inbred families:

chemical analysis

Five brothers from each of the five different inbred families

(families A, B, C, D and G, each of which resulted from a

different brother–sister pairing) and five sisters also from

each of the five different inbred families (families B, D, E, F

and G) were killed by freezing at K278C for 15 min. They

were then thawed for 30 min at room temperature, placed

individually in flasks with 3 ml n-pentane (greater than 99%,

Fluka, Switzerland), and shaken for 15 min on an orbital

shaker for extraction. The extract was then transferred to a

clean vial and reduced by evaporation using a stream of

gaseous nitrogen until approximately 0.1 ml remained.

Samples were quantified on an HP 6890 gas chromatograph

with a split/splitless injector (3008C, automatic sampling,

injection of 1 ml). We used a fused silica column (DB-1,

30 m!0.25 mm ID, 0.25 mm, J&W Scientific, Folsom,

Canada) with a helium flow of 1 ml minK1. The oven

temperature was programmed as follows: 2 min at 358C, to

1008C at a rate of 208 minK1, to 3008C at 68C minK1, 25 min

at 3008C. The flame ionization detector was run with 40 ml

H2 minK1 and 450 ml air minK1. In a previous study (Steiger

et al. 2007), 88 peaks out of 91 regularly occurring peaks

were identified. For the current study, the 40 peaks with the

largest area were chosen for integration (see electronic

supplementary material for chemical identity of the 40

peaks). One of the males (MC3) had to be excluded from

the analysis because the extract was contaminated.
(g) Statistical analyses

Statistical analyses were performed using SPSS v. 15. We

used a repeated measures ANOVA to compare the same

male’s behaviour in successive matings and a one-way

ANOVA to compare the behaviour of males from different

treatment groups in their fifth encounter with a female. To

meet the criterion of homogeneity of variances, we log

transformed all data prior to analysis.

For the analysis of chemical data, the total peak area of the

40 peaks of each individual was standardized to 100% and

multivariate analyses were performed. Because peak areas

represent compositional data, they were transformed to

logcontrasts (Aitchinson 1986). To assess the similarity of

the pattern of individuals within and between families, a

cluster analysis was performed using the PAM procedure

(partitioning around medoids; Kaufman & Rousseeuw 1990)

of the R package with the chord distance as the distance

index. The average silhouette width that provides an

evaluation of clustering validity was used to select an

appropriate number of clusters (Kaufman & Rousseeuw

1990). In addition, a discriminant analysis (DA) was

performed to determine whether females of different families

could be discriminated on the basis of their cuticular profile.

To reduce the number of variables prior to the DA, we first

performed a principal component analysis (PCA).
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3. RESULTS

(a) The effect of female novelty on male

mating behaviour

In the first experiment, time to mating varied significantly

with the number of encounters (repeated measures

ANOVA of log-transformed times, nZ18, d.f.Z4,

FZ6.31, p!0.001; figure 1). Time to mating increased

continuously over the course of the first four encounters

(with the same female), but only the pairwise comparisons

between the first and third or fourth exposure were

significant. When males were exposed to a novel virgin

female in the fifth encounter, they mated significantly

faster than in the third or fourth exposure to the first

female and as fast as in their first encounter with a female

(figure 1).

Our results provided no indication that physical

exhaustion caused males to increase their time to mating

after multiple copulations. When males were exposed a

new virgin female each time, time to mating remained

short and did not differ between the encounters (nZ9;

back-transformed mean and meanGs.e. for time to

mating: 17.06, 20.96 and 13.89 s; repeated measures

ANOVA, d.f.Z4, FZ0.88, pZ0.49). Most of these males

mated with all five females (meanGs.e.: 4.4G0.2),

whereas males encountering the same female five times,

copulated an average of three times (nZ19; meanGs.e.:

2.9G0.1), significantly less (t-test, tZ6.23, p!0.001).
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(b) Recognition of familiar females

(i) Female mating status

Female mating status had no influence on male mating

behaviour. Time to mating did not differ significantly

between trials in which the novel female was a virgin or a

mated female (back-transformed mean and meanGs.e. for

time to mating; virgin female (nZ16): 32.13, 45.22,

22.82 s; mated female (nZ19): 23.64, 31.31, 17.85 s;

t-test, tZ0.70, pZ0.49).
RSPB 20080375—30/4/2008—12:51—CHANDRAN—299268—XML – pp.
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(ii) Self-referent cues versus female-specific cues

Time to mating in a male’s fifth encounter was signifi-

cantly affected by features of the females he encountered

(ANOVA, d.f.Z3, FZ7.46, p!0.001; figure 2). Males

took less time to mate with novel mated females than with

their own previous mate, even when the female’s previous

mate was the male’s inbred brother. When males

encountered a close relative of their previous mate (inbred

sister), time to mating was intermediate and not signi-

ficantly different from those observed with novel females or

previous mates (figure 2).
1–9
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(c) Masking of cuticular substances with

concentrated extracts

When males were presented in a fifth encounter with a

female treated with the same surface extract as the female

with whom the males had interacted previously, males

took significantly longer to mate than the males of the

control group (t-test, tZ2.77, pZ0.016; figure 3). This

difference was not due to an overall reduction in the

attractiveness of females treated with female cuticular

extract: in the first mating encounter, there was no

difference between the time to mating in the treatment

and control (back-transformed mean and meanGs.e. for

time to mating; female with surface extract (nZ12):

25.74, 33.98, 19.50 s; female with pentane (nZ10):

31.60, 46.09, 21.67 s; t-test, tZK0.45, pZ0.66).
Q3

females). Envelopes represent 95% confidence ellipses. Filled
squares, family B; filled circles, family D; triangles, family E;
open squares, family F; open circles, family G.
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(d) Cuticular patterns of inbred families:

chemical analysis

The average silhouette width was maximal when six

clusters were produced. The visual representation of the

six clusters reveals three features of the cuticular pattern

(figure 4): male and female beetles were well separated and

fell into different clusters (with the exception of one

female, FF2). Males were assigned to only two different

clusters, females to five, suggesting greater variation of

cuticular composition among females than males. This

result was supported by the Nei indices for male and

female substances, which showed that male chemical

profiles were more similar than females (all possible

combinations were calculated within one sex: meanG
s.d.; male: 0.94G0.04; female: 0.89G0.10; t-test,

d.f.Z574, tZ7.31, p!0.001). In addition, the five female

clusters were not equivalent to the five families. However,

at least three sisters of each family fell into the same

cluster. To examine if the female families can be separated

on the basis of the cuticular pattern, a DA was performed.

Prior to DA a PCA was used to reduce the number of

variables (40 substances). This produced eight principal

components with eigenvalues of more than 1, explaining

91.75% of the total variance. The DA performed on the

eight principal components significantly differentiated the

chemical profiles of the female deriving from different

families (Wilks’ l!0.015, c32
2 Z73.13, p!0.001). Three

discriminant functions added significantly to the discrimi-

nation between groups, with the first explaining 60.3%,

the second 23.6% and the third 9.1% of the total variation

(the first two functions are shown in figure 5). Most

females (88.0%) were correctly assigned to their groups.
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In a cross validation (leave-one-out cross validation), the

value of correct classifications was reduced to 68.0%, but

this compares to a value of 20% correct classification

expected by chance.
4. DISCUSSION
The results of our study provide unambiguous evidence

for the Coolidge effect in burying beetles N. vespilloides.

Male sexual interest declined over the course of several

repeat encounters with the same female and was renewed

when males encountered a novel female. This effect

was not caused by a preference for virgin females:

male responses to novel mated and novel virgin females

were similar.

Our experimental manipulation of female chemical

features documents the role of cuticular substances in the

discrimination between familiar and novel mates. When a

male encountered a novel female that had been coated

with the same cuticular substances as his previous mate,

he acted as if this female was his previous mate.

We could also show that males do not simply leave some

of their own substances on the female to mark them as

previous mates. Males did not treat females mated by their

inbred brothers as different from virgin females or novel

females mated by unrelated males. The application of

extracts suggested that males instead learn their mates’

individual specific cues during mating and discriminate

against similar scents in their subsequent mating behaviour.

Consistent with this interpretation, male responses to their
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previous mate’s close relative (inbred sister) were inter-

mediate to their response to their previous mate and novel

females. This indicates that inbred sisters were similar but

still somewhat different from each other in their cuticular

cues, such that males could sometimes but not always

recognize them as different individuals. This interpretation

is compatible with the result of our chemical analysis: some

females from the same family were assigned to the same

cluster, while others were not, which means that at least

some of the inbred sisters were more similar to each other

than to females from other inbred families. The result of the

cluster analysis was also consistent with that of the DA,

in which approximately 70% of the individuals were

correctly assigned to their family.

Cuticular substances play a fundamental role in insect

communication, especially in recognition systems (Singer

1998; Howard & Blomquist 2005). Many species studied

to date have complex chemical profiles that could provide

cues for individual discrimination. In N. vespilloides, at

least 91 major substances contribute to cuticular pattern

(Steiger et al. 2007). If males can distinguish only two

concentrations of each compound, there are 291 possible

combinations. We do not have any information about

male abilities to differentiate between concentrations of

individual compounds, but it appears that burying beetle

cuticular patterns could easily contain sufficient infor-

mation to allow for discrimination between individuals.

Many mammals use scent to distinguish between

conspecific individuals (see references in Thom & Hurst

2004) and so do a number of crustaceans (see references

in Gherardi & Tiedemann 2004) and insects (Barrows

1975; Breed 1981; D’Ettorre & Heinze 2005; Widemo

2006). In insects, the role of cuticular substances,

specifically hydrocarbons, has frequently been inferred

based on inter-individual or inter-colony variation.

Providing definitive evidence of the role of cuticular

substances in mate or colony member recognition requires

experimental manipulations, such as stripping dead

individuals of cuticular substances and reapplying extracts

to abolish and restore specific response behaviours (e.g.

Wedell & Tregenza 1997), treating dummies with extracts

(Akino et al. 2004) or applying extracts, fractions of

extracts or solid-phase cuticular hydrocarbons from one

individual to another live individual to manipulate the

response to the second individual (Lahav et al. 1999;

Torres et al. 2007). In the context of discrimination

between individuals, direct application of concentrated

cuticular extracts in order to mask cuticular compositions

(as in this study) can be a useful method to provide

unequivocal evidence of the role of cuticular substances.

A study of the responsiveness of male bees (Lasioglossum

zephyrum) to novel females after an initial 10 min encounter

with a first female showed that as the relationship between

two females increased, males increasingly failed to dis-

tinguish them, indicating that the cues produced by females

have a genetic basis (Smith 1983). Similarly, this study

suggests that males may be confused about female identity

when encountering close relatives (inbred sisters) of their

original mate, which also suggests that genetic effects are

important. Diet and other environmental factors can

significantly affect chemical cues produced by animals

(Thom & Hurst 2004), but in our study, there was little

to no variation in environment or diet, since all females in

the study had been reared under identical laboratory
RSPB 20080375—30/4/2008—12:51—CHANDRAN—299268—XML – pp.
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conditions, kept in the same containers and substrate and

fed the same diet.

Our results provide the first clear demonstration of the

Coolidge effect and definitive evidence of its underlying

mechanism in an insect. In burying beetles, their complex

social lives may have been selected for the ability to

discriminate between individuals, which may have facili-

tated the Coolidge effect. Generally, the risk of re-mating

with a previous mate will increase if a male has continued

access to the same female, and preferring alternative mates

will only benefit a male if such alternatives are actually

available. Thus, we would expect the Coolidge effect only

if male–female associations are somewhat stable in time

and space, and if there is some clumping of females. The

carcass as an essential, but rare, ephemeral and unpre-

dictable resource required for feeding and reproduction

can temporarily cause such clumping (Pukowski 1933).

On any carcass, suitable for reproduction or not, potential

mates may be available for a limited time only. The losers

of aggressive interactions on carcasses, subordinate males

(Bartlett 1988) and females (Müller et al. 1990), leave the

carcass early (Bartlett 1988; Müller et al. 1990, 2007;

Scott & Williams 1993). Male or female intruders may

leave quickly after unsuccessful attempts to take over the

carcass from the original residents (Trumbo 1990). In

both the situations, males may have limited opportunities

to mate with particular females and may benefit from

spreading sperm evenly.

The Coolidge effect wears off quickly, and is non-

existent approximately 30 min after an initial mating ( J. K.

Müller, unpublished data). Our experiments were not

affected by this short duration because males re-encoun-

tering the same female always did so within 5–10 min after

their previous contact. If the loss of sexual interest was of

longer duration, it could potentially interfere with

frequent matings used by males to maximize their

paternity on carcasses. Dominant males increase their

paternity with the dominant female through repeated

matings during carcass burial and preparation, approxi-

mately 70 during the first 24 hours (Müller & Eggert

1989). The short-term loss of male sexual interest in his

previous mate may actually function in part to allow him

to space out matings evenly during the oviposition period

to allow for optimal fertilization success.

Male N. vespilloides perceive individual differences in

the cuticular signatures of individual females and use them

to discriminate between familiar and unfamiliar females.

This constitutes individual recognition sensu Beecher &

Bekoff (1981) and Dale et al. (2001) because each female

individual in our population can be discriminated from

every other individual on the basis of a unique set of cues.

However, although males use individual specific cuticular

information, they do so simply to discriminate between

two ‘classes’ (Tibbetts & Dale 2007) or ‘heterogeneous

subgroups’ (Barrows et al. 1975) of individuals, familiar

females and unfamiliar females. This has led some authors

to classify systems like this as cases of ‘binary discrimi-

nation’ (Gherardi & Thienemann 2004) instead of true

individual recognition.

Interestingly, our study revealed higher variation in the

chemical composition of the female than the male cuticle.

This suggests that females may be under stronger selection

for individual distinctiveness. In Polistes wasps, there is

evidence that complex social behaviour can select for
1–9
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variation in traits used in individual recognition (Tibbetts

2004) and similarly, signals of individual identity may

facilitate stable joint-breeding associations of burying

beetles on carcasses, which are more common in females

than males (Müller et al. 2007). Being individually

recognizable may also benefit female burying beetles in

the context of mating. Female reproduction depends on

the amount of fertile sperm they have available for

fertilization, and sperm degenerate after prolonged

storage in the spermatheca (Eggert 1992). When

encounters between a particular male and female are

brief or infrequent, an even distribution of male sperm

through the Coolidge effect may benefit females because it

increases the probability that they receive sufficient fertile

sperm to ensure fertilization of their egg clutch.
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